A novel unified model of fetal hemoglobin induction by pharmacological agents: An in silico approach
DOI:
https://doi.org/10.55184/ijpas.v75i01.88Keywords:
Fetal hemoglobin, hydroxyurea, GPCR pathway, neurotransmitter, reactome analysis, gamma- globin, MeCP2Abstract
In β-thalassemia patients or in patients of sickle cell disease (SCD), the presence of mutant β globin gene is the absolute cause for alpha-beta globin chain imbalance, resulting in severe anemia in them. This condition can be ameliorated by inducing the production of γ globin chain which is mainly expressed in the fetus and thereby producing the fetal hemoglobin (α2γ2) in adults. In normal adults, usually a very low amount of fetal hemoglobin is present, since the transcription of the γ globin gene is gradually repressed as the development progresses. However, several pharmacological agents have been reported to derepress the γ globin gene transcription or induce fetal hemoglobin, but the precise molecular mechanism underlying this potential is yet to clear. Here, we have performed a bioinformatic study with a specific aim of revealing the molecular pathways involved in fetal hemoglobin induction following exposure to hydroxyurea – the only FDA approved drug for this purpose. Microarray gene expression data from bone marrow samples of rats exposed to hydroxyurea have been analyzed through bioinformatic methods which revealed that a novel signal transduction pathway downstream to G-protein coupled neurotransmitter receptors is possibly involved. Along with that several other pathways which were reported in earlier studies also found to be activated and interrelated. Combining these findings and linking the identified molecular pathways we have formulated a comprehensive model of fetal hemoglobin induction by pharmacological agents. We hope this model would light up the way for the development of targeted drugs for thalassemia and SCD.
References
Fritsch EF, Lawn RM, Maniatis T. Molecular cloning and characterization of the human β-like globin gene cluster. Cell. 1980;19(4):959-972. doi:10.1016/0092-8674(80)90087-2
Schechter AN. Hemoglobin research and the origins of molecular medicine. Blood. 2008;112(10):3927-3938. doi:10.1182/blood-2008-04-078188
Cao A, Galanello R. Beta-thalassemia. Genet Med 2010 122. 2010;12(2):61-76. doi:10.1097/gim.0b013e3181cd68ed
Chakravorty S, Williams TN. Sickle cell disease: a neglected chronic disease of increasing global health importance. Arch Dis Child. 2015;100(1):48-53. doi:10.1136/archdischild-2013-303773
Bhatia M, Walters MC. Hematopoietic cell transplantation for thalassemia and sickle cell disease: past, present and future. Bone Marrow Transplant 2008 412. 2007;41(2):109-117. doi:10.1038/sj.bmt.1705943
TJ L, J D, NP A, et al. 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med. 1982;307(24):1469-1475. doi:10.1056/nejm198212093072401
Mabaera R, West RJ, Conine SJ, et al. A cell stress signaling model of fetal hemoglobin induction: what doesn’t kill red blood cells may make them stronger. Exp Hematol. 2008;36(9):1057-1072. doi:10.1016/j.exphem.2008.06.014
Saunthararajah Y, Lavelle D. DNA Methylation and Globin Gene Expression. Blood. 2008;112(11):sci-19. doi:10.1182/blood.V112.11.SCI-19.SCI-19
Veith R, Galanello R, Papayannopoulou T, Stamatoyannopoulos G. Stimulation of F-Cell Production in Patients with Sickle-Cell Anemia Treated with Cytarabine or Hydroxyurea. http://dx.doi.org/101056/NEJM198512193132503. 2010;313(25):1571-1575. doi:10.1056/nejm198512193132503
G S, R V, R G, T P. Hb F production in stressed erythropoiesis: observations and kinetic models. Ann N Y Acad Sci. 1985;445(1):188-197. doi:10.1111/J.1749-6632.1985.tb17188.X
McCaffrey PG, Newsome DA, Fibach E, Yoshida M, Su MSS. Induction of γ-Globin by Histone Deacetylase Inhibitors. Blood. 1997;90(5):2075-2083. doi:10.1182/blood.V90.5.2075
Perrine SP, Rudolph A, Faller D V, et al. Butyrate infusions in the ovine fetus delay the biologic clock for globin gene switching. Proc Natl Acad Sci U S A. 1988;85(22):8540. doi:10.1073/pnas.85.22.8540
Witt O, Sand K, Pekrun A. Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways. Blood. 2000;95(7):2391-2396. doi:10.1182/blood.V95.7.2391
Pace BS, Qian X, Sangerman J, et al. p38 MAP kinase activation mediates γ-globin gene induction in erythroid progenitors. Exp Hematol. 2003;31(11):1089-1096. doi:10.1016/s0301-472X(03)00235-2
Ganter B, Tugendreich S, Pearson CI, et al. Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol. 2005;119(3):219-244. doi:10.1016/j.jbiotec.2005.03.022
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207. doi:10.1093/nar/30.1.207
Fabregat A, Korninger F, Viteri G, et al. Reactome graph database: Efficient access to complex pathway data. PLoS Comput Biol. 2018;14(1). doi:10.1371/journal.pcbi.1005968
Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498. doi:10.1093/nar/gkz1031
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(Database issue):D607. doi:10.1093/nar/gky1131
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13(11):2498. doi:10.1101/gr.1239303
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinforma 2003 41. 2003;4(1):1-27. doi:10.1186/1471-2105-4-2
Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11. doi:10.1186/1752-0509-8-s4-S11
Steidl U, Bork S, Schaub S, et al. Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators. Blood. 2004;104(1):81-88. doi:10.1182/blood-2004-01-0373
Shao L, Elujoba-Bridenstine A, Zink KE, et al. The neurotransmitter receptor Gabbr1 regulates proliferation and function of hematopoietic stem and progenitor cells. Blood. 2021;137(6):775-787. doi:10.1182/blood.2019004415
Mignini F, Streccioni V, Amenta F. Autonomic innervation of immune organs and neuroimmune modulation. Auton Autacoid Pharmacol. 2003;23(1):1-25. doi:10.1046/j.1474-8673.2003.00280.x
Kalinkovich A, Spiegel A, Shivtiel S, et al. Blood-forming stem cells are nervous: Direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain Behav Immun. 2009;23(8):1059-1065. doi:10.1016/j.bbi.2009.03.008
Janušonis S. Functional associations among G protein-coupled neurotransmitter receptors in the human brain. BMC Neurosci 2014 151. 2014;15(1):1-19. doi:10.1186/1471-2202-15-16
Walker AL, Franke RM, Sparreboom A, Ware RE. Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters. Exp Hematol. 2011;39(4):446. doi:10.1016/j.exphem.2011.01.004
Pathan H, Williams J. Basic opioid pharmacology: an update. Br J Pain. 2012;6(1):11. doi:10.1177/2049463712438493
BROOKS D. Dopamine agonists: their role in the treatment of Parkinson’sdisease. J Neurol Neurosurg Psychiatry. 2000;68(6):685. doi:10.1136/jnnp.68.6.685
Neves SR, Ram PT, Iyengar R. G protein pathways. Science (80- ). 2002;296(5573):1636-1639. doi:10.1126/science.1071550
Chin D, Means AR. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000;10(8):322-328. doi:10.1016/s0962-8924(00)01800-6
YAN K, GAO L-N, CUI Y-L, ZHANG Y, ZHOU X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Mol Med Rep. 2016;13(5):3715. doi:10.3892/mmr.2016.5005
Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmc enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151(7):1417. doi:10.1016/j.cell.2012.11.022
Zhou Z, Hong EJ, Cohen S, et al. Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation. Neuron. 2006;52(2):255-269. doi:10.1016/j.neuron.2006.09.037
Ebert DH, Gabel HW, Robinson ND, et al. Activity-Dependent Phosphorylation of MeCP2 T308 Regulates Interaction with NCoR. Nature. 2013;499(7458):341. doi:10.1038/nature12348
Nan X, Ng H-H, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nat 1998 3936683. 1998;393(6683):386-389. doi:10.1038/30764
Chahrour M, Jung SY, Shaw C, et al. MeCP2, a Key Contributor to Neurological Disease, Activates and Represses Transcription. Science. 2008;320(5880):1224. doi:10.1126/science.1153252
Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 2007 1012. 2007;10(12):1513-1514. doi:10.1038/nn2010
Chen Y, Shin B-C, Thamotharan S, Devaskar SU. Creb1-Mecp2-mCpG Complex Transactivates Postnatal Murine Neuronal Glucose Transporter Isoform 3 Expression. Endocrinology. 2013;154(4):1598. doi:10.1210/en.2012-2076
Xie AX, Pan X-Q, Meacham RB, Malykhina AP. The Expression of Transcription Factors Mecp2 and CREB Is Modulated in Inflammatory Pelvic Pain. Front Syst Neurosci. 2019;0:69. doi:10.3389/fnsys.2018.00069
Mellios N, Feldman DA, Sheridan SD, et al. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry. 2018;23(4):1051. doi:10.1038/mp.2017.86
Petrini I. Biology of MET: a double life between normal tissue repair and tumor progression. Ann Transl Med. 2015;3(6):82. doi:10.3978/j.issn.2305-5839.2015.03.58
Huang EJ, Reichardt LF. Trk Receptors: Roles in Neuronal Signal Transduction*. http://dx.doi.org/101146/annurev.biochem72121801161629. 2003;72:609-642. doi:10.1146/annurev.biochem.72.121801.161629
Sheng M, Greenberg ME. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990;4(4):477-485. doi:10.1016/0896-6273(90)90106-p
Adams KW, Kletsov S, Lamm RJ, Elman JS, Mullenbrock S, Cooper GM. Role for Egr1 in the Transcriptional Program Associated with Neuronal Differentiation of PC12 Cells. PLoS One. 2017;12(1):e0170076. doi:10.1371/journal.pone.0170076
Grimes ML, Beattie E, Mobley WC. A signaling organelle containing the nerve growth factor-activated receptor tyrosine kinase, TrkA. Proc Natl Acad Sci. 1997;94(18):9909-9914. doi:10.1073/pnas.94.18.9909
Meyer-Franke A, Wilkinson GA, Kruttgen A, et al. Depolarization and cAMP Elevation Rapidly Recruit TrkB to the Plasma Membrane of CNS Neurons. Neuron. 1998;21(4):681. doi: 10.1016/s0896-6273(00)80586-3
Du J, Feng L, Zaitsev E, Je H-S, Liu X, Lu B. Regulation of TrkB receptor tyrosine kinase and its internalization by neuronal activity and Ca2+ influx. J Cell Biol. 2003;163(2):385. doi:10.1083/jcb.200305134
N EZ, BM B, E S. The neuropeptide pituitary adenylate cyclase activating protein stimulates human monocytes by transactivation of the Trk/NGF pathway. Cell Signal. 2007;19(1):152-162. doi:10.1016/j.cellsig.2006.05.031
FS L, R R, AH K, PC C, MV C. Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase-activating polypeptides. J Biol Chem. 2002;277(11):9096-9102. doi:10.1074/jbc.m107421200
Coppé J-P, Patil CK, Rodier F, et al. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. PLoS Biol. 2008;6(12). doi:10.1371/journal.pbio.0060301
Rodier F, Coppé J-P, Patil CK, et al. Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11(8):973. doi:10.1038/ncb1909
JW H, GR A, N W, K K, SJ E. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75(4):805-816. doi:10.1016/0092-8674(93)90499-g
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta - Mol Cell Res. 2014;1843(11):2563-2582. doi:10.1016/j.bbamcr.2014.05.014
M S, H N, M F, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998;17(9):2596-2606. doi:10.1093/emboj/17.9.2596
Takekawa M, Tatebayashi K, Saito H. Conserved Docking Site Is Essential for Activation of Mammalian MAP Kinase Kinases by Specific MAP Kinase Kinase Kinases. Mol Cell. 2005;18(3):295-306. doi:10.1016/j.molcel.2005.04.001
Raingeaud J, Whitmarsh AJ, Barrett T, Dérijard B, Davis RJ. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol. 1996;16(3):1247-1255. doi:10.1128/mcb.16.3.1247
Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science (80- ). 1997;275(5296):90-94. doi:10.1126/science.275.5296.90
Opal SM, DePalo VA. Anti-Inflammatory Cytokines. Chest. 2000;117(4):1162-1172. doi:10.1378/chest.117.4.1162
P C, V O, RJ K, A B-F, U U, H K. Gene expression alterations of human peripheral blood monocytes induced by medium-term treatment with the TH2-cytokines interleukin-4 and -13. Cytokine. 2005;30(6):366-377. doi:10.1016/j.cyto.2005.02.004
R de WM, J A, B B, CG F, JE de V. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991;174(5):1209-1220. doi:10.1084/jem.174.5.1209
A M-K, M M, M H, P G, D E. Contrasting effects of IL-4, IL-10 and corticosteroids on RANTES production by human monocytes. Int Immunol. 1996;8(10):1587-1594. doi:10.1093/intimm/8.10.1587
Kopydlowski KM, Salkowski CA, Cody MJ, et al. Regulation of Macrophage Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo. J Immunol. 1999;163(3). PMID: 1041505
Oh H-M, Yu C-R, Golestaneh N, et al. STAT3 Protein Promotes T-cell Survival and Inhibits Interleukin-2 Production through Up-regulation of Class O Forkhead Transcription Factors *. J Biol Chem. 2011;286(35):30888-30897. doi:10.1074/jbc.m111.253500
Hung W, Elliott B. Co-operative Effect of c-Src Tyrosine Kinase and Stat3 in Activation of Hepatocyte Growth Factor Expression in Mammary Carcinoma Cells *. J Biol Chem. 2001;276(15):12395-12403. doi:10.1074/jbc.m010715200
I K, H I, S H, et al. Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-beta 1. J Exp Med. 2006;203(4):1021-1031. doi:10.1084/jem.20052333
Xie T, Huang F-J, Aldape KD, et al. Activation of Stat3 in Human Melanoma Promotes Brain Metastasis. Cancer Res. 2006;66(6):3188-3196. doi:10.1158/0008-5472.can-05-2674
Morris BJ, Willcox DC, Donlon TA, Willcox BJ. FOXO3: A Major Gene for Human Longevity - A Mini-Review. Gerontology. 2015;61(6):515-525. doi:10.1159/000375235
Huang S, Jean D, Luca M, Tainsky MA, Bar-Eli M. Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. EMBO J. 1998;17(15):4358-4369. doi:10.1093/emboj/17.15.4358
LA M, RJ W. AP2alpha and AP2gamma: a comparison of binding site specificity and trans-activation of the estrogen receptor promoter and single site promoter constructs. Nucleic Acids Res. 1999;27(20):4040-4049. doi:10.1093/nar/27.20.4040
Bosher JM, Williams T, Hurst HC, Bosher JM, Williams T, Hurst HC. The Developmentally Regulated Transcription factor AP-2 is Involved in c-erbB-2 Overrexpression in Human Mammary Carcinoma. PNAS. 1995;92(3):744-747. doi:10.1073/pnas.92.3.744
SD B, J B, JJ E, et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat Genet. 2001;29(4):469-474. doi:10.1038/ng768
Shin DH, Li SH, Chun Y-S, Huang LE, Kim M-S, Park J-W. CITED2 mediates the paradoxical responses of HIF-1α to proteasome inhibition. Oncogene 2008 2713. 2007;27(13):1939-1944. doi:10.1038/sj.onc.1210826
Aerbajinai W, Zhu J, Gao Z, Chin K, Rodgers GP. Thalidomide induces γ-globin gene expression through increased reactive oxygen species–mediated p38 MAPK signaling and histone H4 acetylation in adult erythropoiesis. Blood. 2007;110(8):2864-2871. doi:10.1182/blood-2007-01-065201
G S, R V, A al-K, T P. Induction of fetal hemoglobin by cell-cycle-specific drugs and recombinant erythropoietin. Am J Pediatr Hematol Oncol. 1990;12(1):21-26. doi:10.1097/00043426-199021000-00005
RM B. Reactivation of fetal hemoglobin in adult stem cell erythropoiesis by transforming growth factor-beta. J Hematother Stem Cell Res. 2003;12(5):499-504. doi:10.1089/152581603322448204
Gabbianelli M, Morsilli O, Massa A, et al. Effective erythropoiesis and HbF reactivation induced by kit ligand in β-thalassemia. Blood. 2008;111(1):421-429. doi:10.1182/blood-2007-06-097550