Amelioration of L-methionine production by Alcaligenes faecalis ATCXT3624: Empirical optimization of culture conditions

Main Article Content

Subhadeep Ganguly
Abhijit Hazra
Kaustav Bhattacharyya

Abstract

Background: L-methionine production at the industrial scale suffers from various drawbacks, including the production and separation of the L-enantiomer of the amino acid methionine by chemical production methods. This strain exhibiting resilience to feedback inhibition by L-methionine provided a promising avenue for enhanced production. The present study has tried to uplift the production rate of the amino acid by a developed L-methionine-resistant strain Alcaligenes faecalis ATCXT 3624 through surpassing feedback inhibition. Methods: Empirical optimization of all fermentation conditions was studied by observing the effects of initial pH, temperature, inoculum age, medium volume, cell density, and different micronutrients, which enhanced L-methionine production. In addition, efforts were made to find suitable nitrogen and carbon sources.  Results: Eventually, 23.8±0.22 mg/mL of L-methionine was obtained under optimized fermentation conditions, which is significantly (p<0.05) higher than that produced before optimized fermentation conditions. Conclusion: Eventually, it can be assumed that the strain effectively produced the amino acid at an enhanced rate under optimized conditions.

Article Details

How to Cite
Ganguly, . S., Hazra, A. ., & Bhattacharyya, K. (2024). Amelioration of L-methionine production by Alcaligenes faecalis ATCXT3624: Empirical optimization of culture conditions. INDIAN JOURNAL OF PHYSIOLOGY AND ALLIED SCIENCES, 76(01), 46–51. https://doi.org/10.55184/ijpas.v76i01.215
Section
Research Article

References

Fleitmann T. Bestimmungen des Verhältnisses, in welchem der Schwefel in seinen zwei verschiedenen Formen in den schwefel- und stickstoffhaltigen organischen Verbindungen enthalten ist. Justus Liebigs Annalen der Chemie 1848;66(3):380-1. DOI:10.1002/jlac.18480660313/pdf.

Zhou HY, Wu WJ, Niu K, et al. Enhanced L-methionine production by genetically engineered Escherichia coli through fermentation optimization. 3 Biotech 2019; 9(3): 1-11. DOI:10.1007/s13205-019-1609-8.

Willke, T. Methionine production—a critical review. Appl Microbiol Biotechnol. 2014;98:9893-914. DOI:10.1007/s00253-014-6156-y.

Kinoshita S, Udaka S, Shimono M. Studies on Amino Acid Fermentation Production of L-Glutamic Acid by Various Microorganisms. J Gen Appl Microbiol. 1957;3:193-205. DOI:10.2323/jgam.3.193.

Leuchtenberger W. VCH-Verlag, Weinheim. 1996; 6: 465-502

Okomoto K, Ikeda M. Development of an industrially stable process for L-threonine fermentation by an L-methionine-auxotrophic mutant of Escherichia coli. J Biosci Bioeng. 2000;89:87-9. DOI: 10.1016/S1389-1723(00)88057-3.

Sharma S, Gomes J. Effect of dissolve oxygen on continuous production of methionine. Eng Life Sci. 2001;1:69-73. DOI: 10.1002/1618-2863(200108)1:2<69::AID-ELSC69>3.0.CO;2-2.

Hazra A, Bhattacharyya K, Dutta S, et al. Isolation and characterization of a novel L-Methionine producer from Mahanadi river site in Sambalpur district of Odisha, India. Biocatal Agric Biotechnol. 2023;102659. DOI: 10.1016/j.bcab.2023.102659

Barrios-Gonzalez J, Fernandez F J, Tomasini A. Microbial secondary metabolites production and strain improvement. Indian J Biotechnol. 2003;2: 322-33. Available at https://www.researchgate.net/publication/265150826.

Castellani A, Chalmers AJ. Manual of Tropical Medicine. Williams, Wood and Co., New York. 1919. DOI:10.5962/bhl.title.84653.

Narayana VA, Vesipriya A, Ventata NR, et al. Methionine production and optimization using Bacillus cereus isolated from soil. Res J Pharm Biol Chem Sci. 2017;4:1489-97. DOI: 10.36348/sijb.2022.v05i07.001.

Mohanta MK, Islam MS, Haque M, Saha AK. Isolation and characterization of amino acid producing bacteria from cow dung. J Microbiol Biomed Res 2016; 3(2), 1-8. Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3845547

Dike S, Ekwealor IA. Production of L-methionine by Bacillus cereus isolated from different soil ecovars in Owerri, South East Nigeria. Eur J Exp Biol 2012;2(2),311-4. Available at https://www.primescholars.com/articles/production-of-l-methionine-by-ibacillus-cereusi-isolated-from-different-soil-ecovars-in-owerri-south-east-nigeria.pdf

Anike N, Okafor N. Secretion of methionine by microorganisms associated with Cassava fermentation. African J Food Agric Nutr Dev. 2008;8(1):77-90. DOI:10.4314/ajfand.v8i1.19181.

Javed A, Jamil A, Rezaei-Zarchi S. Optimization and hyper-expressed production of lysine through chemical mutagenesis of Brevibacterium flavum by N-nitroso-N-ethylurea. Afr J Microbiol Res. 2011;5(29)5230-8. DOI: 10.5897/AJMR11.892.

Bhattacharyya K, Ganguly S. Optimization of process parameters for Cd (II) biosorption onto a Cd (II) resistant yeast strain Candida tropicalis XTA1874 in aqueous medium. Sci Cult. 2023;89(3–4):138-45. DOI: 10.36094/sc.v89.2023.

Bates RG, Acree SF. pH of aqueous mixtures of potassium dihydrogen phosphate and disodium hydrogen phosphate at 0° to 60°C. National Bureau of Standards. US Department of Commerce. Research Paper RP1648. 1945;34:373-94. Available at https://nvlpubs.nist.gov/nistpubs/jres/34/jresv34n4p373_A1b.pdf

Bhattacharyya K, Bhattacharjee N, Ganguly S. Evidence for the augmented Cd (II) biosorption by Cd (II) resistant strain Candida tropicalis XTA1874 from contaminated aqueous medium. Sci Rep. 2023;13:12034. DOI: 10.1038/s41598-023-38485-z.