Amelioration of L-methionine production by Alcaligenes faecalis ATCXT3624: Empirical optimization of culture conditions

Authors

  • Subhadeep Ganguly Department of Physiology, Vidyasagar College, Kolkata, West Bengal, India
  • Abhijit Hazra Department of Physiology, Vidyasagar College, Kolkata, West Bengal, India
  • Kaustav Bhattacharyya Department of Physiology, Vidyasagar College, Kolkata, West Bengal, India

DOI:

https://doi.org/10.55184/ijpas.v76i01.215

Abstract

Background: L-methionine production at the industrial scale suffers from various drawbacks, including the production and separation of the L-enantiomer of the amino acid methionine by chemical production methods. This strain exhibiting resilience to feedback inhibition by L-methionine provided a promising avenue for enhanced production. The present study has tried to uplift the production rate of the amino acid by a developed L-methionine-resistant strain Alcaligenes faecalis ATCXT 3624 through surpassing feedback inhibition. Methods: Empirical optimization of all fermentation conditions was studied by observing the effects of initial pH, temperature, inoculum age, medium volume, cell density, and different micronutrients, which enhanced L-methionine production. In addition, efforts were made to find suitable nitrogen and carbon sources.  Results: Eventually, 23.8±0.22 mg/mL of L-methionine was obtained under optimized fermentation conditions, which is significantly (p<0.05) higher than that produced before optimized fermentation conditions. Conclusion: Eventually, it can be assumed that the strain effectively produced the amino acid at an enhanced rate under optimized conditions.

References

Fleitmann T. Bestimmungen des Verhältnisses, in welchem der Schwefel in seinen zwei verschiedenen Formen in den schwefel- und stickstoffhaltigen organischen Verbindungen enthalten ist. Justus Liebigs Annalen der Chemie 1848;66(3):380-1. DOI:10.1002/jlac.18480660313/pdf.

Zhou HY, Wu WJ, Niu K, et al. Enhanced L-methionine production by genetically engineered Escherichia coli through fermentation optimization. 3 Biotech 2019; 9(3): 1-11. DOI:10.1007/s13205-019-1609-8.

Willke, T. Methionine production—a critical review. Appl Microbiol Biotechnol. 2014;98:9893-914. DOI:10.1007/s00253-014-6156-y.

Kinoshita S, Udaka S, Shimono M. Studies on Amino Acid Fermentation Production of L-Glutamic Acid by Various Microorganisms. J Gen Appl Microbiol. 1957;3:193-205. DOI:10.2323/jgam.3.193.

Leuchtenberger W. VCH-Verlag, Weinheim. 1996; 6: 465-502

Okomoto K, Ikeda M. Development of an industrially stable process for L-threonine fermentation by an L-methionine-auxotrophic mutant of Escherichia coli. J Biosci Bioeng. 2000;89:87-9. DOI: 10.1016/S1389-1723(00)88057-3.

Sharma S, Gomes J. Effect of dissolve oxygen on continuous production of methionine. Eng Life Sci. 2001;1:69-73. DOI: 10.1002/1618-2863(200108)1:2<69::AID-ELSC69>3.0.CO;2-2.

Hazra A, Bhattacharyya K, Dutta S, et al. Isolation and characterization of a novel L-Methionine producer from Mahanadi river site in Sambalpur district of Odisha, India. Biocatal Agric Biotechnol. 2023;102659. DOI: 10.1016/j.bcab.2023.102659

Barrios-Gonzalez J, Fernandez F J, Tomasini A. Microbial secondary metabolites production and strain improvement. Indian J Biotechnol. 2003;2: 322-33. Available at https://www.researchgate.net/publication/265150826.

Castellani A, Chalmers AJ. Manual of Tropical Medicine. Williams, Wood and Co., New York. 1919. DOI:10.5962/bhl.title.84653.

Narayana VA, Vesipriya A, Ventata NR, et al. Methionine production and optimization using Bacillus cereus isolated from soil. Res J Pharm Biol Chem Sci. 2017;4:1489-97. DOI: 10.36348/sijb.2022.v05i07.001.

Mohanta MK, Islam MS, Haque M, Saha AK. Isolation and characterization of amino acid producing bacteria from cow dung. J Microbiol Biomed Res 2016; 3(2), 1-8. Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3845547

Dike S, Ekwealor IA. Production of L-methionine by Bacillus cereus isolated from different soil ecovars in Owerri, South East Nigeria. Eur J Exp Biol 2012;2(2),311-4. Available at https://www.primescholars.com/articles/production-of-l-methionine-by-ibacillus-cereusi-isolated-from-different-soil-ecovars-in-owerri-south-east-nigeria.pdf

Anike N, Okafor N. Secretion of methionine by microorganisms associated with Cassava fermentation. African J Food Agric Nutr Dev. 2008;8(1):77-90. DOI:10.4314/ajfand.v8i1.19181.

Javed A, Jamil A, Rezaei-Zarchi S. Optimization and hyper-expressed production of lysine through chemical mutagenesis of Brevibacterium flavum by N-nitroso-N-ethylurea. Afr J Microbiol Res. 2011;5(29)5230-8. DOI: 10.5897/AJMR11.892.

Bhattacharyya K, Ganguly S. Optimization of process parameters for Cd (II) biosorption onto a Cd (II) resistant yeast strain Candida tropicalis XTA1874 in aqueous medium. Sci Cult. 2023;89(3–4):138-45. DOI: 10.36094/sc.v89.2023.

Bates RG, Acree SF. pH of aqueous mixtures of potassium dihydrogen phosphate and disodium hydrogen phosphate at 0° to 60°C. National Bureau of Standards. US Department of Commerce. Research Paper RP1648. 1945;34:373-94. Available at https://nvlpubs.nist.gov/nistpubs/jres/34/jresv34n4p373_A1b.pdf

Bhattacharyya K, Bhattacharjee N, Ganguly S. Evidence for the augmented Cd (II) biosorption by Cd (II) resistant strain Candida tropicalis XTA1874 from contaminated aqueous medium. Sci Rep. 2023;13:12034. DOI: 10.1038/s41598-023-38485-z.

Downloads

Published

30-03-2024

How to Cite

Ganguly, . S., Hazra, A. ., & Bhattacharyya, K. (2024). Amelioration of L-methionine production by Alcaligenes faecalis ATCXT3624: Empirical optimization of culture conditions. INDIAN JOURNAL OF PHYSIOLOGY AND ALLIED SCIENCES, 76(01), 46–51. https://doi.org/10.55184/ijpas.v76i01.215