Efficacy of nano-curcumin on nicotine-induced genotoxicity and immunomodulatory disruption in protein- malnourished female rats

Main Article Content

Somashree Biswas
Krishana Chattopadhyay
Brajadulal Chattopadhyay

Abstract

Background: Aggravated DNA damage and immunomodulatory disruptions by nicotine are more prominent in female populations under protein-restricted conditions. Females are more susceptible to nicotine-induced complications due to their low innate immunity. Anti-inflammatory and anti-genotoxic curcumin, though it effectively works against nicotine-induced complications, still its therapeutic use is hindered due to its poor aqueous solubility and low bioavailability. Nano-curcumin would be a better therapeutic agent because of its increased aqueous solubility and higher bioavailability than curcumin.  Materials: This study investigates the effects of nicotine (2.5 mg/kg body weight injected subcutaneously for 21 days) on genotoxicity and immunomodulatory disruptions in female rats maintained under a protein-restricted diet (5% casein) and determines the ameliorative efficacy of nano-curcumin after one hour of nicotine dosage. Results: It is observed that nicotine decreases hemoglobin content in blood and DNA content in tissues. It causes severe DNA damage and disrupts the immune system and endocrine functions under protein-restricted conditions. Nano-curcumin ameliorates the nicotine-mediated genotoxic effects, maintains the female sex hormone levels, and restores the normalcy of immune responses in protein-restricted diet rats more efficiently than curcumin. Conclusion: Nano-curcumin looks like a potential blocker of nicotine, which may be used as a prospective therapeutic herbal agent to protect the health of the protein-malnourished female population.

Article Details

How to Cite
Biswas, S., Chattopadhyay, K., & Chattopadhyay, B. (2024). Efficacy of nano-curcumin on nicotine-induced genotoxicity and immunomodulatory disruption in protein- malnourished female rats. INDIAN JOURNAL OF PHYSIOLOGY AND ALLIED SCIENCES, 76(01), 25–31. https://doi.org/10.55184/ijpas.v76i01.211
Section
Research Article

References

Global Burden of Disease [database]. Washington, DC: Institute of Health Metrics; 2019. IHME, accessed 17 July 2021.

Bailador FD, Wonnacott. Nicotinic acetylcholine receptors and the regulation of neuronal signaling. Trends Pharmacol Sci. 2004;.25(6):317-24. DOI: 10.1016/j.tips.2004.04.006.

Cardinale A, Nastrucci C, Cesario A, et al. Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit Rev Toxicol. 2012;42:68–89. DOI: 10.3109/10408444.2011.623150.

Lee J, Cooke JP. Nicotine and pathological angiogenesis. Life Sci. 2012;91:1058–64. DOI: 10.1016/j.lfs.2012.06.032.

Ebrahimpour A, Shrestha S, Bonnen MD, et al. Nicotine modulates growth factors and microRNA to promote inflammatory and fibrotic processes. J Pharmacol Exp Ther. 2019;368(2):169–78. DOI: 10.1124/jpet.118.252650.

Solleti SK, Simon DM, Srisuma S, et al. Airway epithelial cell PPARγ modulates cigarette smoke-induced chemokine expression and emphysema susceptibility in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309:L293–304. DOI: 10.1152/ajplung.00287.2014.

Bellaye PS, Kolb M. Why do patients get idiopathic pulmonary fibrosis? Current concepts in the pathogenesis of pulmonary fibrosis. BMC Med. 2015;13:176. DOI: 10.1186/s12916-015-0412-6.

Yang IV, Schwartz DA. Epigenetics of idiopathic pulmonary fibrosis. Transl Res. 2015; 165:48–60. DOI:10.1016/j.trsl.2014.03.011.

Benowitz NL, Hukkanen J, Jacob P. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;(192):29-60. DOI: 10.1007/978-3-540-69248-5_2.

Sanner T, Grimsrud TK. Nicotine: Carcinogenicity and Effects on Response to Cancer Exposure – A Review. Front Oncol. 2015;5:196. DOI: 10.3389/fonc.2015.00196.

Arabi M. Nicotinic infertility: assessing DNA and plasma membrane integrity of human spermatozoa. Andrologia. 2004;36:305-10. DOI: 10.1111/j.1439-0272.2004.00623.x.

Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6):2228-33. DOI: 10.1172/JCI78088.

Gour N, Karp MW. IL-4 and IL-13 Signaling in allergic airway disease. Cytokine. 2015;75(1):68-78. DOI: 10.1016/j.cyto.2015.05.014.

Rebe C, GhiringelliF. Interleukin-1β and Cancer. Cancers (Basel). 2020;12(7):1791. DOI: 10.3390/cancers12071791.

Pelaia C, Paoletti G, Puggioni F, et al. Interleukin-5 in the Pathophysiology of Severe Asthma. Front Physiol. 2019;10:1514. DOI: 10.3389/fphys.2019.01514.

Tirado-Rodriguez B, Ortega E, Segura-Medina P, Huerta-Yepez S. TGF-β: an important mediator of allergic disease and a molecule with dual activity in cancer development. J Immunol Res. 2014; 2014:318481. DOI: 10.1155/2014/318481.

Mendoza JL, Escalante NK, Jude KM et al. Structure of the IFNγ receptor complex guides design of biased agonists. Nature. 2019;567:56-60. DOI: 10.1038/s41586-019-0988-7.

Moghbeli M, Khedmatgozar H, Yadegari M. et al. Cytokines and the immune response in obesity-related disorders. Adv Clin Chem. 2021;101:135-68. DOI:10.1016/bs.acc.2020.06.004.

Comer DM, Elborn JS, Ennis M. Inflammatory and cytotoxic effects of acrolein, nicotine, acetaldehyde and cigarette smoke extract on human nasal epithelial cells. BMC Pulm Med. 2014;14:32. DOI: 10.1186/1471-2466-14-32.

Pace E, Ferraro M, Di Vincenzo S, et al. Oxidative stress and innate immunity responses in cigarette smoke stimulated nasal epithelial cells. Toxicology. 2014;28:292-9. DOI: 10.1016/j.tiv.2013.11.004.

Macnee W, Tuder RM. New paradigms in the pathogenesis of chronic obstructive pulmonary disease I. Proc Am Thorac Soc. 2009;6:527-31. DOI: 10.1513/pats.200905-025DS.

Rahman I. Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J Biochem Mol Biol. 2003; 36:95-109. DOI: 10.5483/bmbrep.2003.36.1.095.

Wullaert A, Loo GV, Heyninick K, Beyaert R. Hepatic tumor necrosis factor signaling and nuclear factor-kappaB: effects on liver homeostasis and beyond. Endocr Rev. 2007; 28(4):365-86. DOI: 10.1210/er.2006-0031.

Peng WC, Logan CY, Fish M, et al. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell. 2018;175(6):1607-19.e15. DOI: 10.1016/j.cell.2018.11.012.

Qian S, Wei Z, Yang W, et al. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022; 12:985363. DOI: 10.3389/fonc.2022.985363.

Ethier AR, Mckinney Ty, Tottenham LS, et al. The effect of reproductive hormones on women's daily smoking across the menstrual cycle. Biol Sex Differ. 2021;12(1):41. DOI: 10.1186/s13293-021-00384-1.

Okwu GN, Ukoha AL. Studies on the predisposing factors of protein energy malnutrition among pregnant women in a Nigerian community. Online Journal of Health and Allied Sciences. 2007;6(3):1-9. Available at https://web-archive.southampton.ac.uk/cogprints.org/5927/1/2007-3-1.pdf

Chattopadhyay K, Samanta A, Mukhopadhyay S, et al. Potential amelioration of nicotine-induced toxicity by nanocurcumin. Drug Dev Res. 2018; 79:119-28. DOI: 10.1002/ddr.21424.

Hawk PB, Oser BL, Summerson WH. Practical physiological chemistry. Mc Grew Hill Book Co.1954. New York, London.

Banerjee S, Bandyopadhyay G, Chattopadhyay K, Chattopadhyay BD. Amelioration of nicotine-induced damage of blood cells in protein-malnourished female rats by curcumin. Int J Pharmacol. 2010;6(4):444-55. DOI: 10.3923/ijp.2010.444.455.

Akmal M, Kesani A, Anand B, Singh A, Wiseman M, Goodship A. Effect of nicotine on spinal disc cells: A cellular mechanism for disc degeneration. Spine (Phila Pa 1976). 2004;29(5):568-75. DOI: 10.1097/01.brs.0000101422.36419.d8.

Bandyopadhyay G, Sinha S, Chattopadhyay BD, Chakraborty A. Protective role of curcumin against nicotine-induced genotoxicity on rat liver under restricted dietary protein. Eur J Phrmacol. 2008;588:151-7. DOI: 10.1016/j.ejphar.2008.04.023

Chattopadhyay K, Chattopadhyay B. Effect of nicotine on lipid profile, peroxidation and antioxidant enzymes in female rats with restricted dietary protein. Ind J Med Res. 2008;127:571-6. PMID: 18765876.

Samanta A, Chowdhury T, Chattopadhyay B, Chattopadhyay K. Studies the therapeutic efficacy of nanocurcumin against nicotine-induced damage of blood cells. Int J Pharmaceu Res Innovat. 2021;14:12-26. Available at https://www.whitesscience.com/wp-content/uploads/woocommerce_uploads/2021/02/IJIPRI_14_12-24_2021-hodcbn.pdf.

Premkumar K, Kavitha S, Santhiya ST. Ramesh AR, Suwanteerangkul J. Interactive effects of saffron with garlic and curcumin against cyclophosphamide-induced genotoxicity in mice. Asia Pac J Clin Nutr. 2004;13(3):292-4. PMID: 15331343.

Ray S, Chattopadhyay N, Mitra A, Siddiqi M, Chatterjee A. Curcumin exhibits antimetastatic properties by modulating integrin receptors, collagenase activity, and expression of Nm23 and E-cadherin. J Environ Pathol Toxicol Oncol. 2003;22(1):49-58. PMID: 12678405.

Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295. DOI: 10.1101/cshperspect.a016295.

Luzina IG, Keegan AD, Heller NM, Rook GAW, Shea-Donohue T, Atamas SP. Regulation of inflammation by interleukin-4: A review of “alternatives”. J Leukoc Biol. 2012;92(4):753–64. DOI: 10.1189/jlb.0412214.

Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol. 2018;9:847. DOI: 10.3389/fimmu.2018.00847.

Glantz LA, Gilmore JH, Lieberman JA. Jarskog LF. Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophrenia Res. 2006;81:47-63. DOI: 10.1016/j.schres.2005.08.014.

Hardwick JM. Soane L. Multiple Functions of BCL-2 Family Proteins. Cold Spring Harb Perspect Biol. 2013;5(2):a008722. DOI: 10.1101/cshperspect.a008722.

Jandikova, H, Duskova M and Starka, L. The influence of smoking and cessation on the human reproductive hormonal balance. Physiol Res. 2017;66(Suppl 3): S323-s31.

Adesky ND, Vaccari JPDR, Bhattacharya, P. et al. Nicotine alters estrogen receptor-beta-regulated inflammasome activity and exacerbates ischemic brain damage in female rats. Int J Mol Sci. 2018;19(5):1330. DOI: 10.3390/ijms19051330.

Binion DG, Otterson MF, Rafiee P. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut. 2008;57(11):1509-17. DOI: 10.1136/gut.2008.152496.